Continuity of the polar decomposition for unbounded operators on Hilbert C*-modules
نویسندگان
چکیده
منابع مشابه
Continuity of the Polar Decomposition for Unbounded Operators on Hilbert C*-modules
For unbounded operators t, s between Hilbert C*-modules which admit the polar decompositions V|t|, W|s|, respectively, we obtain an explicit upper bound estimate for the gap between t and s in terms of the norm of the bounded operators V − W , C|t| − C|s| and C|t∗| − C|s∗|, where C|t| and C|s| are the Cayley transforms of |t| and |s|. The result are used to drive a criterion for continuity of t...
متن کامل8 Generalized Inverses and Polar Decomposition of Unbounded Regular Operators on Hilbert C ∗ - Modules
In this note we show that an unbounded regular operator t on Hilbert C∗modules over an arbitrary C∗ algebra A has polar decomposition if and only if the closures of the ranges of t and |t| are orthogonally complemented, if and only if the operators t and t∗ have unbounded regular generalized inverses. For a given C∗-algebra A any densely defined A-linear closed operator t between Hilbert C∗-mod...
متن کاملextend numerical radius for adjointable operators on Hilbert C^* -modules
In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.
متن کامل*-frames for operators on Hilbert modules
$K$-frames which are generalization of frames on Hilbert spaces, were introduced to study atomic systems with respect to a bounded linear operator. In this paper, $*$-$K$-frames on Hilbert $C^*$-modules, as a generalization of $K$-frames, are introduced and some of their properties are obtained. Then some relations between $*$-$K$-frames and $*$-atomic systems with respect to a...
متن کاملProducts Of EP Operators On Hilbert C*-Modules
In this paper, the special attention is given to the product of two modular operators, and when at least one of them is EP, some interesting results is made, so the equivalent conditions are presented that imply the product of operators is EP. Also, some conditions are provided, for which the reverse order law is hold. Furthermore, it is proved that $P(RPQ)$ is idempotent, if $RPQ$†</...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasnik Matematicki
سال: 2010
ISSN: 0017-095X
DOI: 10.3336/gm.45.2.15